
Security Audit Report for
Paras Token Contract

Date: Aug 30, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 Additional Recommendation . 4

2.1.1 Inconsistency of Constant Name . 4

2.2 Notes . 4

2.2.1 Assumption on the Secure Implementation of NEAR SDK 4

2.2.2 Fixed Total Supply Owned by the Contract Owner 5

i

Report Manifest

Item Description
Client Paras
Target Paras Token Contract

Version History

Version Date Description
1.0 Aug 30, 2022 First Release

About BlockSec The BlockSec focuses on the security of the blockchain ecosystem and collaborates

with leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers

and experienced experts from both academia and industry. They have published multiple blockchain se-

curity papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and suc-

cessfully protected digital assets that are worth more than 5 million dollars by blocking multiple attacks.

They can be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The repository that has been audited includes the PARAS token contract 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA
Paras Token Contract Version 1 8b7ffcbd2bc00bb08c8898096ec09f8c9ef88ef3

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit

report include ft folder contract only. Specifically, the file covered in this audit include:

- src/lib.rs

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

1https://github.com/ParasHQ/paras-token-contract

1

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

2

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find zero potential issue. We have one recommendation and two notes.

- High Risk: 0

- Medium Risk: 0

- Low Risk: 0

- Recommendations: 1

- Notes: 2

ID Severity Description Category Status
1 - Inconsistency of Constant Name Recommendation Confirmed

2 -
Assumption on the Secure Implementation of
NEAR SDK

Notes Confirmed

3 -
Fixed Total Supply Owned by the Contract
Owner

Notes Confirmed

The details are provided in the following sections.

2.1 Additional Recommendation

2.1.1 Inconsistency of Constant Name

Status Confirmed

Introduced by Version 1

Description The constant string name SVG_PARAS_ICON does not match the file type (PNG) of the PARAS

icon.

34const SVG_PARAS_ICON: &str = "data:image/png;base64, ...

Listing 2.1: ft/src/lib.rs

Suggestion It is suggested to change the constant name from SVG_PARAS_ICON to PNG_PARAS_ICON.

2.2 Notes

2.2.1 Assumption on the Secure Implementation of NEAR SDK

Status Confirmed

Introduced by Version 1

Description This PARAS token contract is built based on the near-sdk (version 4.0.0-pre.7). The required

interfaces and the basic functionality for NEP-141 (Fungible Token Standard), NEP-145 (Storage Manage-

ment Standard) and NEP-148 (Fungible Token Metadata Standard) are provided in the token contract. In

this audit, we assume the standard library provided by NEAR SDK (i.e., near_contract_standards) has no

security issues.

4

18 use near_contract_standards::fungible_token::metadata::{
19 FungibleTokenMetadata, FungibleTokenMetadataProvider, FT_METADATA_SPEC,
20 };
21 use near_contract_standards::fungible_token::FungibleToken;

Listing 2.2: ft/src/lib.rs

90 near_contract_standards::impl_fungible_token_core!(Contract, token, on_tokens_burned);
91 near_contract_standards::impl_fungible_token_storage!(Contract, token, on_account_closed);

Listing 2.3: ft/src/lib.rs

Feedback from the Project Confirmed, it is based on NEAR SDK.

2.2.2 Fixed Total Supply Owned by the Contract Owner

Status Confirmed

Introduced by Version 1

Description The contract can be initialized only once and the given total supply will be owned by the

given account ID. By default, the total supply of the token PARAS is 100_000_000_000_000_000_000_000_000

(with decimals 18), and the token cannot be minted or burnt after the initialization.

35const TOTAL_SUPPLY: Balance = 100_000_000_000_000_000_000_000_000;
36
37#[near_bindgen]
38impl Contract {
39 #[init]
40 pub fn new_paras_meta(owner_id: AccountId) -> Self {
41 Self::new(
42 owner_id,
43 U128(TOTAL_SUPPLY),
44 FungibleTokenMetadata {
45 spec: FT_METADATA_SPEC.to_string(),
46 name: "PARAS".to_string(),
47 symbol: "PARAS".to_string(),
48 icon: Some(SVG_PARAS_ICON.to_string()),
49 reference: None,
50 reference_hash: None,
51 decimals: 18
52 },
53)
54 }
55
56 /// Initializes the contract with the given total supply owned by the given ‘owner_id‘ with
57 /// the given fungible token metadata.
58 #[init]
59 pub fn new(
60 owner_id: AccountId,
61 total_supply: U128,
62 metadata: FungibleTokenMetadata,
63) -> Self {

5

64 assert!(!env::state_exists(), "Already initialized");
65 metadata.assert_valid();
66 let mut this = Self {
67 token: FungibleToken::new(b"a".to_vec()),
68 metadata: LazyOption::new(b"m".to_vec(), Some(&metadata)),
69 };
70 this.token.internal_register_account(&owner_id);
71 this.token.internal_deposit(&owner_id, total_supply.into());
72 near_contract_standards::fungible_token::events::FtMint {
73 owner_id: &owner_id,
74 amount: &total_supply,
75 memo: Some("Initial tokens supply is minted"),
76 }
77 .emit();
78 this
79 }

Listing 2.4: ft/src/lib.rs

Feedback from the Project Confirmed, the fixed total supply is intended.

6

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Additional Recommendation
	2.1.1 Inconsistency of Constant Name

	2.2 Notes
	2.2.1 Assumption on the Secure Implementation of NEAR SDK
	2.2.2 Fixed Total Supply Owned by the Contract Owner

		2022-08-30T17:09:00+0800
	BlockSec Audit Team

